mppt/App/src/mppt_control.c

716 lines
18 KiB
C
Raw Normal View History

2024-07-11 06:58:55 +00:00
/*
* mppt_control.c
*
* Created on: 2024<EFBFBD><EFBFBD>6<EFBFBD><EFBFBD>29<EFBFBD><EFBFBD>
* Author: psx
*/
#include "mppt_control.h"
#include "collect_Conversion.h"
#include "pwm.h"
#include "inflash.h"
2024-07-22 06:20:24 +00:00
#include "gpio.h"
2024-08-29 02:50:22 +00:00
#include "sl_protocol.h"
#include "task.h"
2024-07-11 06:58:55 +00:00
#include "uart_dev.h"
2024-07-12 09:02:26 +00:00
static void TrickleCharge(void);
static void ConstantCurrentCharge(void);
static void ConstantVoltageCharge(void);
static void FloatingCharge(void);
2024-08-29 02:50:22 +00:00
static void NoBatteryCharge(void);
2024-07-12 09:02:26 +00:00
2024-08-05 02:35:10 +00:00
/* ռ<>ձ<EFBFBD> */
float g_duty_ratio = 0.7;
2024-08-05 02:35:10 +00:00
/* <20><><EFBFBD><EFBFBD>ȷ<EFBFBD><C8B7><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ģʽ */
2024-08-29 02:50:22 +00:00
//static uint8_t modeFlag = 2;
2024-08-05 02:35:10 +00:00
2024-07-11 06:58:55 +00:00
/**
* @brief <EFBFBD>õ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ĺ<EFBFBD><EFBFBD><EFBFBD>
* @param
* @retval OutputPower <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
*/
static float Get_OutputPower(void)
{
static float OutputPower;
static float V_out, I_out;
V_out = get_PV_VOLT_OUT();
I_out = get_CHG_CURR();
OutputPower = V_out * I_out;
printf(" V = %d/100, I = %d/10000, OutputPower = %d/10000 \r\n",
(int)(V_out*100), (int)(I_out * 10000), (int)(OutputPower * 10000));
return OutputPower;
}
/**
* @brief ʹ<EFBFBD>õ<EFBFBD>Ϊ<EFBFBD>Ŷ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ŷ<EFBFBD>,<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ѹ,ʹ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
* @param
* @retval
*/
/* pwmռ<6D>ձȵ<D5B1><C8B5>ڲ<EFBFBD><DAB2><EFBFBD> */
const float step1_pwm = 0.01;
2024-08-05 02:35:10 +00:00
const float step2_pwm = 0.005;
2024-07-11 06:58:55 +00:00
//#define array_num 10
void mppt_readJust(void)
{
// static float last_duty_ratio = 0.5;
// static float now_duty_ratio;
// static float last_OutputPower;
// static float now_OutputPower;
// static float step_pwm = step1_pwm;
//
// last_OutputPower = Get_OutputPower();
//
// printf(" duty_ratio = %d/1000 \r\n", (int)(last_duty_ratio * 1000));
//
// /* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڲ鿴<DAB2><E9BFB4><EFBFBD><EFBFBD><EFBFBD>Ƿ<EFBFBD><C7B7><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
// now_duty_ratio = last_duty_ratio + step_pwm;
// if (now_duty_ratio > 1) {
// now_duty_ratio = 1;
// }
// Set_duty_ratio(now_duty_ratio);
// now_OutputPower = Get_OutputPower();
// if (now_OutputPower > last_OutputPower) {
// printf(" now_OutputPower > last_OutputPower1 \r\n");
// last_duty_ratio = now_duty_ratio;
// return;
// }
//
// /* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڲ鿴<DAB2><E9BFB4><EFBFBD><EFBFBD><EFBFBD>Ƿ<EFBFBD><C7B7><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
// now_duty_ratio = last_duty_ratio - step_pwm;
// if (now_duty_ratio < 0) {
// now_duty_ratio = 0;
// }
// Set_duty_ratio(now_duty_ratio);
// now_OutputPower = Get_OutputPower();
// if (now_OutputPower > last_OutputPower) {
// printf(" now_OutputPower > last_OutputPower2 \r\n");
// last_duty_ratio = now_duty_ratio;
// return;
// }
//
// /* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڹ<EFBFBD><DAB9>ʾ<EFBFBD>δ<EFBFBD><CEB4><EFBFBD>󣬴<EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD>ù<EFBFBD><C3B9><EFBFBD>Ϊԭ<CEAA><D4AD><EFBFBD>ĵ<EFBFBD> */
// Set_duty_ratio(last_duty_ratio);
2024-08-05 02:35:10 +00:00
// step_pwm = step2_pwm;
2024-07-11 06:58:55 +00:00
static float last_duty_ratio = 0.5;
static float last_OutputPower;
static float now_OutputPower;
static float step_pwm = step1_pwm;
last_OutputPower = Get_OutputPower();
printf(" duty_ratio = %d/1000 \r\n", (int)(last_duty_ratio * 1000));
/* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڲ鿴<DAB2><E9BFB4><EFBFBD><EFBFBD><EFBFBD>Ƿ<EFBFBD><C7B7><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
2024-08-05 02:35:10 +00:00
g_duty_ratio = last_duty_ratio + step_pwm;
Set_duty_ratio(&g_duty_ratio);
2024-07-11 06:58:55 +00:00
now_OutputPower = Get_OutputPower();
if (now_OutputPower > last_OutputPower) {
printf(" now_OutputPower > last_OutputPower1 \r\n");
2024-08-05 02:35:10 +00:00
last_duty_ratio = g_duty_ratio;
2024-07-11 06:58:55 +00:00
return;
}
/* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڲ鿴<DAB2><E9BFB4><EFBFBD><EFBFBD><EFBFBD>Ƿ<EFBFBD><C7B7><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
2024-08-05 02:35:10 +00:00
g_duty_ratio = last_duty_ratio - step_pwm;
Set_duty_ratio(&g_duty_ratio);
2024-07-11 06:58:55 +00:00
now_OutputPower = Get_OutputPower();
if (now_OutputPower > last_OutputPower) {
printf(" now_OutputPower > last_OutputPower2 \r\n");
2024-08-05 02:35:10 +00:00
last_duty_ratio = g_duty_ratio;
2024-07-11 06:58:55 +00:00
return;
}
/* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڹ<EFBFBD><DAB9>ʾ<EFBFBD>δ<EFBFBD><CEB4><EFBFBD>󣬴<EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD>ù<EFBFBD><C3B9><EFBFBD>Ϊԭ<CEAA><D4AD><EFBFBD>ĵ<EFBFBD> */
2024-08-05 02:35:10 +00:00
g_duty_ratio = last_duty_ratio;
Set_duty_ratio(&g_duty_ratio);
step_pwm = step2_pwm;
2024-07-11 06:58:55 +00:00
}
void printf_data(void)
{
printf("\n");
// get_CHG_CURR();
// get_PV_VOLT_OUT();
// get_DSG_CURR();
// get_PV1_VOLT_IN();
// get_PV_VOLT_IN1();
// get_MOSFET_Temper();
// get_PV2_VOLT_IN();
2024-07-11 06:58:55 +00:00
printf("\n");
}
2024-08-29 02:50:22 +00:00
float_t get_capturedata(float_t (*fun)(void))
{
float_t temp1;
float_t temp[3];
for (int i = 0; i < 3; ++i) {
temp[i] = fun();
// Delay_Us(1);
}
if (temp[0] > temp[1]) {
temp1 = temp[0];
temp[0] = temp[1];
temp[1] = temp1;
}
if (temp[0] > temp[2]) {
temp1 = temp[0];
temp[0] = temp[2];
temp[2] = temp1;
if (temp[1] > temp[2]) {
temp1 = temp[1];
temp[1] = temp[2];
temp[2] = temp1;
}
}
return temp[1];
}
//uint16_t get_mpptMode(void)
//{
// return (uint16_t)modeFlag;
//}
2024-07-12 09:34:47 +00:00
/**
* @brief <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ѹ
* @param
* @retval
*
*/
void mppt_constantVoltage(float InVoltage)
2024-07-11 06:58:55 +00:00
{
// static uint8_t ConstantVoltageFlag = 1;
// float PV1_V = get_PV1_VOLT_IN();
//
// if (ConstantVoltageFlag) {
// if (PV1_V > InVoltage) {
// g_duty_ratio += step1_pwm;
// Set_duty_ratio(&g_duty_ratio);
// } else {
// g_duty_ratio -= step1_pwm;
// Set_duty_ratio(&g_duty_ratio);
// }
//
// if (PV1_V - InVoltage < 0.1) {
// ConstantVoltageFlag = 0;
// }
// } else {
// if (PV1_V > InVoltage) {
// g_duty_ratio += step2_pwm;
// Set_duty_ratio(&g_duty_ratio);
// } else {
// g_duty_ratio -= step2_pwm;
// Set_duty_ratio(&g_duty_ratio);
// }
//
// if (PV1_V - InVoltage > 0.1) {
// ConstantVoltageFlag = 1;
// }
// }
2024-07-12 09:34:47 +00:00
static float_t kp = 0.005;
static float_t ki = 0.00001;
// static float_t allError = 0;
2024-07-11 06:58:55 +00:00
// float_t error = (get_PV1_VOLT_IN()) - InVoltage;
// float_t error = InVoltage - (get_PV2_VOLT_IN());
// allError += error;
2024-08-29 02:50:22 +00:00
// printf("111\n");
2024-07-22 06:20:24 +00:00
2024-08-29 02:50:22 +00:00
float_t pv1Volt = get_capturedata(get_PV1_VOLT_IN);
// printf("volt in : %d \n", pv1Volt);
float_t error = pv1Volt - InVoltage;
// float_t error = InVoltage - pv1Volt;
float_t stepPwm = kp * error + ki * pv1Volt;
g_duty_ratio += stepPwm;
// printf("setPwm : %d/10000 \n", (int)(stepPwm * 10000));
// printf("setPwm : %d/10000 \n", (int)(stepPwm * 10000));
// printf("g_duty_ratio : %d/10000 \n", (int)(g_duty_ratio * 10000));
2024-07-22 06:20:24 +00:00
Set_duty_ratio(&g_duty_ratio);
2024-07-11 06:58:55 +00:00
}
2024-08-05 02:35:10 +00:00
/**
* @brief <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ѹ
* @param
* @retval
*
*/
void mppt_constantVoltageO(float OutVoltage)
{
// static uint8_t ConstantVoltageFlag = 1;
// float PV1_V = get_PV_VOLT_OUT();
//
// if (ConstantVoltageFlag) {
// if (PV1_V > OutVoltage) {
// g_duty_ratio -= step1_pwm;
// Set_duty_ratio(&g_duty_ratio);
// } else {
// g_duty_ratio += step1_pwm;
// Set_duty_ratio(&g_duty_ratio);
// }
//
// if (PV1_V - OutVoltage < 0.1) {
// ConstantVoltageFlag = 0;
// }
// } else {
// if (PV1_V > OutVoltage) {
// g_duty_ratio -= step2_pwm;
// Set_duty_ratio(&g_duty_ratio);
// } else {
// g_duty_ratio += step2_pwm;
// Set_duty_ratio(&g_duty_ratio);
// }
//
// if (PV1_V - OutVoltage > 0.1) {
// ConstantVoltageFlag = 1;
// }
// }
2024-08-05 02:35:10 +00:00
static float_t kp = 0.02;
static float_t ki = 0.00001;
// static float_t kp = 0.1;
// static float_t ki = 0.001;
2024-08-05 02:35:10 +00:00
2024-08-29 02:50:22 +00:00
// float_t outVolt = get_PV_VOLT_OUT();
float_t outVolt = g_Mppt_Para.Battery_Voltage;
// float_t error = outVolt - OutVoltage;
float_t error = OutVoltage - outVolt;
float_t stepPwm = kp * error + ki * outVolt;
g_duty_ratio += stepPwm;
2024-08-05 02:35:10 +00:00
// printf("setPwm : %d/10000 \n", (int)(stepPwm * 10000));
Set_duty_ratio(&g_duty_ratio);
2024-08-05 02:35:10 +00:00
}
/**
* @brief <EFBFBD><EFBFBD><EFBFBD>˵<EFBFBD><EFBFBD><EFBFBD>ǯλ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
* @param
* @retval
*
*/
void mppt_constantCurrentO(float outCurrent)
{
// static uint8_t ConstantCurrent = 1;
// float out_I = get_CHG_CURR();
//
// if (ConstantCurrent) {
// if (out_I > outCurrent) {
// g_duty_ratio -= step1_pwm;
// Set_duty_ratio(&g_duty_ratio);
// } else {
// g_duty_ratio += step1_pwm;
// Set_duty_ratio(&g_duty_ratio);
// }
//
// if (out_I - outCurrent < 0.1) {
// ConstantCurrent = 0;
// }
// }
//
// else {
// if (out_I > outCurrent) {
// g_duty_ratio -= step2_pwm;
// Set_duty_ratio(&g_duty_ratio);
// } else {
// g_duty_ratio += step2_pwm;
// Set_duty_ratio(&g_duty_ratio);
// }
//
// if (out_I - outCurrent > 0.1) {
// ConstantCurrent = 1;
// }
// }
2024-08-05 02:35:10 +00:00
static float_t kp = 0.005;
static float_t ki = 0.00005;
2024-08-05 02:35:10 +00:00
// static float_t last_CHG_CURR = 0;
// static float_t flag = 1;
// static float_t last_OutputPower = 0;
2024-08-05 02:35:10 +00:00
2024-08-29 02:50:22 +00:00
// float_t outCurr = get_CHG_CURR();
float_t outCurr = g_Mppt_Para.Charg_Current;
// float_t OutputPower = outCurr * get_PV_VOLT_OUT();
float_t error = outCurrent - outCurr;
// float_t error = outCurr - outCurrent;
float_t stepPwm = kp * error + ki * outCurr;
2024-08-05 02:35:10 +00:00
// if (flag) {
// if (OutputPower > last_OutputPower) {
// g_duty_ratio += stepPwm;
// flag = 1;
// } else {
// g_duty_ratio -= stepPwm;
// flag = 0;
// }
// } else {
// if (OutputPower > last_OutputPower) {
// g_duty_ratio -= stepPwm;
// flag = 0;
// } else {
// g_duty_ratio += stepPwm;
// flag = 1;
// }
// }
//
// last_OutputPower = OutputPower;
2024-08-05 02:35:10 +00:00
g_duty_ratio += stepPwm;
// printf("setPwm : %d/10000 \n", (int)(stepPwm * 10000));
// printf("g_duty_ratio : %d/10000 \n", (int)(g_duty_ratio * 10000));
Set_duty_ratio(&g_duty_ratio);
2024-08-05 02:35:10 +00:00
// last_CHG_CURR = outCurr;
// if (stepPwm > 0 && (last_CHG_CURR > outCurr)) {
// flag = 1;
// } else {
// flag = 0;
// }
2024-08-05 02:35:10 +00:00
}
2024-07-22 06:20:24 +00:00
2024-07-12 09:02:26 +00:00
/**
2024-07-12 09:34:47 +00:00
* @brief <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
2024-07-12 09:02:26 +00:00
* @param
* @retval
*
*/
void TrickleCharge(void)
{
2024-08-29 02:50:22 +00:00
mppt_constantCurrentO(2);
2024-07-12 09:02:26 +00:00
}
/**
2024-07-12 09:34:47 +00:00
* @brief <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>mppt<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʳ<EFBFBD><EFBFBD><EFBFBD>
2024-07-12 09:02:26 +00:00
* @param
* @retval
*
*/
void ConstantCurrentCharge(void)
{
// mppt_readJust();
mppt_constantVoltage(18);
2024-07-12 09:02:26 +00:00
}
/**
* @brief <EFBFBD><EFBFBD>ѹ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>
* @param
* @retval
*
*/
void ConstantVoltageCharge(void)
{
mppt_constantVoltageO(14.5);
2024-07-12 09:02:26 +00:00
}
/**
* @brief <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
* @param
* @retval
*
*/
void FloatingCharge(void)
{
static uint32_t num = 0;
2024-08-29 02:50:22 +00:00
static uint32_t numLenFlag;
static uint8_t onlyOnce = 1;
if (onlyOnce) {
numLenFlag = g_slConfigInfo.FloatTime * 1000 / 5;
onlyOnce = 0;
}
TIM_SetCompare4(TIM4, 0);
2024-08-05 02:35:10 +00:00
2024-08-29 02:50:22 +00:00
if (numLenFlag == ++num) {
num = 0;
2024-08-29 02:50:22 +00:00
ConstantVoltageCharge();
g_Mppt_Para.MPPT_Mode = CONSTANTVOLTAGE;
2024-08-05 02:35:10 +00:00
}
2024-07-12 09:02:26 +00:00
}
2024-08-29 02:50:22 +00:00
/**
* @brief û<EFBFBD>е<EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>һ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ѹ
* @param
* @retval
*
*/
void NoBatteryCharge(void)
{
static float_t NoBatteryChargeV;
static uint8_t onlyOnce = 1;
if (onlyOnce) {
NoBatteryChargeV = (float_t)g_slConfigInfo.noBatteryChargeV / 100;
onlyOnce = 0;
}
mppt_constantVoltageO(NoBatteryChargeV);
if ((g_Mppt_Para.Battery_Voltage - NoBatteryChargeV > 0.1 && g_Mppt_Para.Charg_Current < 0.1)
|| (NoBatteryChargeV - g_Mppt_Para.Battery_Voltage > 0.1 && g_Mppt_Para.Charg_Current > 0.5)) {
ConstantCurrentCharge();
g_Mppt_Para.MPPT_Mode = CONSTANTCURRENT;
}
}
2024-08-05 02:35:10 +00:00
2024-07-12 09:02:26 +00:00
void MpptContorl(void)
{
2024-08-29 02:50:22 +00:00
switch(g_Mppt_Para.MPPT_Mode) {
case TRICKLE:
2024-08-29 02:50:22 +00:00
// printf("111\n");
2024-07-12 09:02:26 +00:00
TrickleCharge();
break;
case CONSTANTCURRENT:
2024-08-29 02:50:22 +00:00
// printf("222222\n");
2024-07-12 09:02:26 +00:00
ConstantCurrentCharge();
break;
case CONSTANTVOLTAGE:
2024-08-29 02:50:22 +00:00
// printf("333333333\n");
2024-07-12 09:02:26 +00:00
ConstantVoltageCharge();
break;
case FLOAT:
2024-08-29 02:50:22 +00:00
// printf("444444444444\n");
2024-07-12 09:02:26 +00:00
FloatingCharge();
break;
2024-08-29 02:50:22 +00:00
case NoBattery:
// printf("555555555555555\n");
NoBatteryCharge();
break;
default:
break;
}
}
void MpptMode(void)
{
2024-08-29 02:50:22 +00:00
// printf("vout : %d /100 \n", (int)(g_Mppt_Para.Battery_Voltage * 100));
// printf("iout : %d /1000 \n", (int)(g_Mppt_Para.Charg_Current * 1000));
// printf("in checkSolarOpenCircuitVoltage v: %d/100 \n", (int)(g_Mppt_Para.Solar_Open_Circuit_Voltage * 100));
static float ConstantCurrentV;
static float ConstantVoltageV;
static float FloatI;
static float StopSolarOpenCircuitV;
/* <20><>ֵ<EFBFBD><D6B5>ִ<EFBFBD><D6B4>һ<EFBFBD><D2BB> */
static uint8_t only_once = 1;
if (only_once) {
ConstantCurrentV = (float)g_slConfigInfo.constantCurrentV / 100;
ConstantVoltageV = (float)g_slConfigInfo.constantVoltageV / 100;
FloatI = (float)g_slConfigInfo.floatI / 100;
StopSolarOpenCircuitV = (float)g_slConfigInfo.stopSolarOpenCircuitV / 100;
only_once = 0;
}
//// if (g_Mppt_Para.Battery_Voltage > 16 || g_Mppt_Para.Battery_Voltage < 8
//// || modeFlag == NoBattery) {
//// modeFlag = NoBattery;
// if (g_Mppt_Para.Battery_Voltage > 16 || g_Mppt_Para.Battery_Voltage < 8
// || g_Mppt_Para.MPPT_Mode == NoBattery) {
// g_Mppt_Para.MPPT_Mode = NoBattery;
// return;
// }
//
//// if (((ConstantVoltageV < g_Mppt_Para.Battery_Voltage) &&
//// (FloatI > g_Mppt_Para.Charg_Current)) || modeFlag == FLOAT) {
//// modeFlag = FLOAT;
// if (((ConstantVoltageV < g_Mppt_Para.Battery_Voltage) &&
// (FloatI > g_Mppt_Para.Charg_Current)) || g_Mppt_Para.MPPT_Mode == FLOAT) {
// g_Mppt_Para.MPPT_Mode = FLOAT;
// return;
// }
//
// if (((ConstantCurrentV + 0.4) < g_Mppt_Para.Battery_Voltage) &&
// ((ConstantVoltageV - 0.4) >= g_Mppt_Para.Battery_Voltage)) {
//// modeFlag = CONSTANTCURRENT;
// g_Mppt_Para.MPPT_Mode = CONSTANTCURRENT;
// return;
// }
//
// if ((ConstantVoltageV < g_Mppt_Para.Battery_Voltage) &&
// (FloatI + 0.1 <= g_Mppt_Para.Charg_Current)) {
//// modeFlag = CONSTANTVOLTAGE;
// g_Mppt_Para.MPPT_Mode = CONSTANTVOLTAGE;
// return;
// }
//
// if (ConstantCurrentV > g_Mppt_Para.Battery_Voltage) {
//// modeFlag = TRICKLE;
// g_Mppt_Para.MPPT_Mode = TRICKLE;
// return;
// }
2024-08-29 02:50:22 +00:00
// if (g_Mppt_Para.Battery_Voltage > 16 || g_Mppt_Para.Battery_Voltage < 8
// || g_Mppt_Para.MPPT_Mode == NoBattery) {
// g_Mppt_Para.MPPT_Mode = NoBattery;
// return;
// }
// if (g_Mppt_Para.Charg_Current - g_Mppt_Para.Discharg_Current < 0.05
// || g_Mppt_Para.Discharg_Current - g_Mppt_Para.Charg_Current < 0.05) {
// g_Mppt_Para.MPPT_Mode = NoBattery;
// return;
// }
//
// if (((ConstantVoltageV < g_Mppt_Para.Battery_Voltage) &&
// (FloatI > g_Mppt_Para.Charg_Current)) || g_Mppt_Para.MPPT_Mode == FLOAT) {
// g_Mppt_Para.MPPT_Mode = FLOAT;
// return;
// }
//
2024-08-29 02:50:22 +00:00
// if (((ConstantCurrentV + 0.4) < g_Mppt_Para.Battery_Voltage) &&
// ((ConstantVoltageV - 0.4) >= g_Mppt_Para.Battery_Voltage)) {
// g_Mppt_Para.MPPT_Mode = CONSTANTCURRENT;
// return;
// }
//
2024-08-29 02:50:22 +00:00
// if ((ConstantVoltageV < g_Mppt_Para.Battery_Voltage) &&
// (FloatI + 0.1 <= g_Mppt_Para.Charg_Current)) {
// g_Mppt_Para.MPPT_Mode = CONSTANTVOLTAGE;
// return;
// }
2024-08-29 02:50:22 +00:00
//
// if (ConstantCurrentV > g_Mppt_Para.Battery_Voltage) {
// g_Mppt_Para.MPPT_Mode = TRICKLE;
// return;
// }
if (g_Mppt_Para.Solar_Open_Circuit_Voltage < StopSolarOpenCircuitV
&& (g_Mppt_Para.Discharg_Current >= g_Mppt_Para.Charg_Current
|| g_Mppt_Para.Charg_Current - g_Mppt_Para.Discharg_Current < 0.05)) {
g_Mppt_Para.MPPT_Mode = NoWork;
stop_mpptWork();
TimeSliceOffset_Register(&m_startMpptControl, Task_startMpptControl
, startMpptControl_reloadVal, startMpptControl_offset);
return;
}
2024-08-29 02:50:22 +00:00
if (((ConstantVoltageV < g_Mppt_Para.Battery_Voltage) &&
(FloatI > g_Mppt_Para.Charg_Current)) || g_Mppt_Para.MPPT_Mode == FLOAT) {
g_Mppt_Para.MPPT_Mode = FLOAT;
return;
}
2024-08-29 02:50:22 +00:00
if (((ConstantCurrentV + 0.4) < g_Mppt_Para.Battery_Voltage) &&
((ConstantVoltageV - 0.4) >= g_Mppt_Para.Battery_Voltage)) {
g_Mppt_Para.MPPT_Mode = CONSTANTCURRENT;
return;
}
2024-08-29 02:50:22 +00:00
if ((ConstantVoltageV < g_Mppt_Para.Battery_Voltage) &&
(FloatI + 0.1 <= g_Mppt_Para.Charg_Current)) {
g_Mppt_Para.MPPT_Mode = CONSTANTVOLTAGE;
return;
}
2024-08-29 02:50:22 +00:00
if (ConstantCurrentV > g_Mppt_Para.Battery_Voltage) {
g_Mppt_Para.MPPT_Mode = TRICKLE;
return;
2024-07-12 09:02:26 +00:00
}
2024-08-29 02:50:22 +00:00
if (g_Mppt_Para.Charg_Current - g_Mppt_Para.Discharg_Current < 0.03
&& g_Mppt_Para.Discharg_Current - g_Mppt_Para.Charg_Current < 0.03) {
g_Mppt_Para.MPPT_Mode = NoBattery;
return;
}
2024-07-12 09:02:26 +00:00
}
2024-08-05 02:35:10 +00:00
void findMiNDutyRatio(void)
{
static uint8_t num = 100;
if (0.05 < get_CHG_CURR()) {
num -= 1;
TIM_SetCompare4(TIM4, num);
}
else {
printf("min duty ratio : %d/200 \n", num);
}
}
2024-07-11 06:58:55 +00:00
void test(void)
{
// mppt_readjust();
// Get_OutputPower();
2024-08-29 02:50:22 +00:00
// mppt_constantVoltage(18);
2024-08-05 02:35:10 +00:00
// findMiNDutyRatio();
// MpptContorl();
2024-07-11 06:58:55 +00:00
2024-08-05 02:35:10 +00:00
// printf_data();
2024-07-22 06:20:24 +00:00
// void MpptContorl();
2024-08-05 02:35:10 +00:00
// mppt_constantVoltageO(12);
2024-08-05 02:35:10 +00:00
// FloatingCharge();
// mppt_readJust();
// mppt_constantCurrentO(1);
2024-08-29 02:50:22 +00:00
g_Mppt_Para.Battery_Voltage = get_capturedata(get_PV_VOLT_OUT);
g_Mppt_Para.Charg_Current = get_capturedata(get_CHG_CURR);
g_Mppt_Para.Discharg_Current = get_capturedata(get_DSG_CURR);
if (!overTemperature) {
MpptMode();
}
MpptContorl();
2024-08-05 02:35:10 +00:00
2024-08-29 02:50:22 +00:00
// mppt_constantVoltageO(12);
2024-08-05 02:35:10 +00:00
// static uint32_t run_num = 0;
// if (1000 < run_num++) {
// FloatingCharge();
// run_num = 1200;
// printf("in floatcharge \n");
// return;
// }
// mppt_readJust();
// mppt_constantCurrentO(1.2);
// int16_t var = 0;
// char buff[4];
// for (var = 0; var < 100; ++var) {
// sprintf(buff, "%3d:", var);
// uart_dev_write(g_gw485_uart4_handle, buff, sizeof(buff));
// uart_dev_write(g_gw485_uart4_handle, "1234567890\n", sizeof("1234567890\n"));
// Delay_Ms(1);
// }
// uart_dev_write(g_gw485_uart4_handle, "\n\n\n\n\n\n", sizeof("\n\n\n\n\n\n"));
2024-07-11 06:58:55 +00:00
}